The Gas Phase Displacement of CF_3 by CH_3 in $CF_3N_2CF_3$

By L. BATT and J. M. PEARSON

(Department of Chemistry, The University, Aberdeen, Scotland)

PITTS, TOLBERG, and MARTIN¹ have obtained evidence for the CH_3 . displacement of CH_3CO . upon reaction of CH_3 . with methyl *trans*-propenyl ketone in the gas phase. This presumably occurs *via* the addition of CH_3 . across the C-C double bond. We report a similar displacement reaction *via* the addition of CH_3 . across the N-N double bond of $CF_3N_2CF_3$ in the gas phase followed by the elimination of CF_3 .

$$CF_{3}$$

$$CH_{3} \cdot + CF_{3}N_{2}CF_{3} \stackrel{1}{\underset{2}{\leftarrow}} CH_{3} - N - N - CF_{3}$$

$$\stackrel{3}{\xrightarrow{}} CF_{3} \cdot + CH_{3}N = NCF_{3}$$

The addition process is exothermic to the extent of ~20 kcal./mole and therefore results in the production of an excited radical, the excess energy being initially located about the CH_3 -N bond. For the displacement reaction to occur in addition to the reverse process 2, there must be a net "flow" of energy into the CF_3 -N bond. The fact that this reaction occurs suggests that the CF_3 -N bond energy is at most equal to the CH_3 -N bond energy or, more likely, less than this value. If we generalise this statement for CH_3-C versus CF_3-C bond energies, this is in conflict with Szwarc *et al.*² and gives support for the lower bond energy cited for C_2F_6 .³

Delocalisation of the excess energy in CH_3

 $CF_3-N-N-CF_3$ and collisional processes will produce a stable radical and we might expect the

substituted hydrazine to be formed.

$$CH_{3} + CF_{3} - N - N - CF_{3} \xrightarrow{4} CF_{3} - N - N - CF_{3} \xrightarrow{CF_{3}} N - N \xrightarrow{CF_{3}} CH_{3} \xrightarrow{CF_{3}} CH_{3} \xrightarrow{CF_{3}} N - N \xrightarrow{CF_{3}} CH_{3} \xrightarrow{CF_{3}} N - N \xrightarrow{CF_{3}} N$$

Evidence for the displacement process is shown by the production of CF_3H and $CF_2=CH_2$ in the reaction of di-t-butyl peroxide (dtBP) with $CF_3N_2CF_3$ in the gas phase in the temperature range 140—170° using 8 mm. Hg of $CF_3N_2CF_3$ and 45 mm. Hg of dtBP. At these temperatures $CF_3N_2CF_3$ does not undergo thermal decomposition. CF_3 radicals from the displacement process abstract hydrogen from dtBP and acetone (produced from the decomposition of the

¹ J. N. Pitts, Jr., R. S. Tolberg, and T. W. Martin, J. Amer. Chem. Soc., 1954, 76, 2843.

² H. Komazawa, A. P. Stefani, and M. Szwarc, J. Amer. Chem. Soc., 1963, 85, 2043.

³ E. Tschuikow-Roux, J. Phys. Chem., 1965, 69, 1075.

t-butoxy-radical) to give CF₃H, while CF₂=CH₂ is produced *via* the disproportionation reaction of CF₃· and CH₃·.⁴

$$CF_{3} \cdot + dtBP \xrightarrow{5} CF_{3}H + dtPB \cdot_{-H}$$

or or
$$(CH_{3})_{2}CO \qquad CH_{3}COCH_{2} \cdot$$

$$CF_{3} \cdot + CH_{3} \cdot \xrightarrow{6} CH_{2} = CF_{2} + HF$$

There is no evidence as yet for CH_3CF_3 , which

W. G. Alcock and E. Whittle, Trans. Faraday Soc., 1965, 61, 244.

should be present, or C_2F_6 , which however should be produced in very small quantities because of the low steady-state concentration of CF_3 . There is some, although not conclusive, evidence for the production of both $CF_3N_2CH_3$ and CF_3 . CF_3 . CF_3 . CF_3 . CH_3 .

(Received, October 11th, 1965; Com. 639.)